

DWA-Regelwerk

Merkblatt DWA-M 540

Mehrdimensionale morphodynamisch-numerische Modelle für Fließgewässer

Juli 2021

DWA-Regelwerk

Merkblatt DWA-M 540

Mehrdimensionale morphodynamisch-numerische Modelle für Fließgewässer

Juli 2021

Die Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) setzt sich intensiv für die Entwicklung einer sicheren und nachhaltigen Wasser- und Abfallwirtschaft ein. Als politisch und wirtschaftlich unabhängige Organisation arbeitet sie fachlich auf den Gebieten Wasserwirtschaft, Abwasser, Abfall und Bodenschutz.

In Europa ist die DWA die mitgliederstärkste Vereinigung auf diesem Gebiet und nimmt durch ihre fachliche Kompetenz bezüglich Regelsetzung, Bildung und Information sowohl der Fachleute als auch der Öffentlichkeit eine besondere Stellung ein. Die rund 14 000 Mitglieder repräsentieren die Fachleute und Führungskräfte aus Kommunen, Hochschulen, Ingenieurbüros, Behörden und Unternehmen.

Impressum

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) Theodor-Heuss-Allee 17 53773 Hennef, Deutschland Tel.: +49 2242 872-333 Fax: +49 2242 872-100 E-Mail: info@dwa.de Internet: www.dwa.de

© DWA, 1. Auflage, Hennef 2021

Satz: Christiane Krieg, DWA

Druck: druckhaus köthen GmbH & Co KG

ISBN: 978-3-96862-123-4 (Print) 978-3-96862-124-1 (E-Book)

Gedruckt auf 100 % Recyclingpapier

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Merkblatts darf vorbehaltlich der gesetzlich erlaubten Nutzungen ohne schriftliche Genehmigung der Herausgeberin in irgendeiner Form – durch Fotokopie, Digitalisierung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen werden.

Bilder und Tabellen, die keine Quellenangaben aufweisen, sind im Rahmen der Merkblatterstellung als Gemeinschaftsergebnis des DWA-Fachgremiums zustande gekommen. Die Nutzungsrechte obliegen der DWA.

Vorwort

Bei der etwas langen Bezeichnung "mehrdimensionale morphodynamisch-numerische Modelle" im Titel dieses Merkblatts handelt es sich um Computermodelle, die die Entwicklung der Sohle eines Fließgewässers berechnen können. Dies tun sie für eine gegebene Geometrie des Fließgewässers und für bestimmte Abflüsse aufgrund von Bilanzgleichungen und insbesondere aufgrund der empirischen Gleichungen für die Transportraten von Feststoffen über der Sohle. Bereits seit vielen Jahren sind diese Modelle für den Einsatz in der Ingenieurpraxis verfügbar. Grundlegende Qualitätsanforderungen an die Entwicklung der Modelle, wie Stabilität, korrekte Kopplung von Strömung und Feststofftransport sowie die exakte Erhaltung der Feststoffmasse im Modell, sind heute vollständig erfüllt. Die Validierungen, wie in 5.6 und in den Beispielen in Abschnitt 6 beschrieben, zeigen gute Ergebnisse. Damit steht der Ingenieurpraxis ein neues Werkzeug zur Verfügung. Vom Fachausschuss WW-2 "Morphodynamik und Sedimentmanagement" wurde daher eine Arbeitsgruppe WW-2.4 "Feststofftransportmodelle (numerisch, physikalisch, hybrid)" zur Anfertigung dieses Merkblatts eingerichtet.

Gegenüber gegenständlichen, also maßstäblich verkleinerten physikalischen Modellen stellen die in diesem Merkblatt besprochenen mehrdimensionalen morphodynamisch-numerischen Modelle inzwischen eine sinnvolle Alternative dar. Die in den gegenständlichen Modellen aufgrund des Modellmaßstabs stets auftretende Frage der Ähnlichkeit ist in den numerischen Modellen kein Problem. Der gemeinsame Transport der verschiedenen Fraktionen wird realistisch reproduziert. Trotzdem bleiben Laborversuche weiterhin unverzichtbar um das Verhalten der Feststoffe unter kontrollierten Bedingungen genau zu untersuchen. Im Arbeitsbericht "Feststofftransportmodelle für Fließgewässer" aus dem Jahr 2003 sind beide Modellklassen sowie eindimensionale morphodynamisch-numerische Modelle ausführlich dargelegt. Der Arbeitsbericht gibt das damals vorhandene Fachwissen in einer deutlich größeren Breite wieder und stellt damit eine sinnvolle Ergänzung zu diesem Merkblatt dar.

Der breite Anwendungsbereich der Modelle ist in Abschnitt 1 angesprochen. Er reicht von Maßnahmen zur Verbesserung der Ökologie an Fließgewässern über flussbauliche Planungen bis zum Feststoffhaushalt und Stauhaltungen. Leider setzen die Einschränkungen in der räumlichen Ausdehnung und den simulierten Zeiträumen der Modelle, wie in 5.2 dargelegt, den Anwendungen noch immer enge Grenzen. Es folgt die kurze Erläuterung der Begriffe und der Abkürzungen in Abschnitt 2.

Die Erfahrung zeigt, dass die Gewässersohle unter der Einwirkung der Strömung immer wieder ganz bestimmte Formen herausbildet. Die Anwender sollten diese Formen, die zur Morphodynamik von Fließgewässern gehören, kennen, um sie in den Modellergebnissen wiederzufinden und auf dieser Basis eine fundierte Interpretation abzugeben. Zu diesem Zweck sind die typischen Formen der Fließgewässersohle in Abschnitt 3 zusammengestellt. Weitergehende Informationen sind im Merkblatt DWA-M 526 zu finden.

Die Arbeitsgruppe hat es sich von Beginn an zum Ziel gemacht, eine einheitliche und systematische Darlegung der wesentlichen Rechengrundlagen abzugeben. Diese Grundlagen sind in den in Abschnitt 4 zusammengestellten Gleichungen für die physikalischen Zusammenhänge gegeben.

Ohne Vereinfachungen und empirische Beziehungen kann der Transport der unzähligen Feststoffpartikel in Gewässerabschnitten jedoch leider nicht berechnet werden. Das Vorgehen bei der erforderlichen Kalibrierung und bei eventuell vorzunehmenden Sensitivitätsuntersuchungen wird in Abschnitt 5 mitgeteilt. Darüber hinaus sind Hilfestellungen zum Vorgehen beim Aufbau von Modellanwendungen sowie die Anforderungen an die Ausgangsdaten in Abschnitt 5 eingefügt.

Die Modelltechnik ist so weit entwickelt, dass sie den planenden Ingenieur mit zuverlässigen Aussagen zur Sohlenlagenentwicklung unterstützen kann. Dies wird im Merkblatt anhand verschiedener lehrreicher Beispiele in Abschnitt 6 demonstriert. Von den zwölf Beispielen stammen sieben aus Laborversuchen. Besonders erfreulich ist, dass drei Beispiele auf Naturmessungen basieren. Die Arbeitsgruppe ist der Auffassung, dass die beschriebenen Modelle heute ein Standardwerkzeug zur Unterstützung der Planung an Fließgewässern darstellen. Meinen herzlichen Dank muss ich allen Mitgliedern der Arbeitsgruppe aussprechen, die trotz Widerständen die Arbeit am Merkblatt aufrechterhalten haben. Hierbei möchte ich Frau Dr. Kopmann besonders hervorheben. Ohne ihre Unterstützung wäre das Merkblatt wohl nicht entstanden.

Darmstadt, im Juni 2021

Peter Mewis

In diesem Merkblatt werden, soweit wie möglich, geschlechtsneutrale Bezeichnungen für personenbezogene Berufs- und Funktionsbezeichnungen verwendet. Sofern dies nicht möglich ist, wird die weibliche und die männliche Form verwendet. Ist dies aus Gründen der Verständlichkeit nicht möglich, wird nur eine von beiden Formen verwendet. Alle Informationen beziehen sich aber in gleicher Weise auf alle Geschlechter.

Frühere Ausgaben

Kein Vorgängerdokument

Verfasser

Dieses Merkblatt wurde von der DWA-Arbeitsgruppe WW-2.4 "Feststofftransportmodelle (numerisch, physikalisch, hybrid)" im Auftrag des DWA-Hauptausschusses "Wasserbau und Wasserkraft" (HA WW) im DWA-Fachausschuss WW-2 "Morphodynamik und Sedimentmanagement" erarbeitet.

An der Erstellung des Merkblatts waren folgende Personen beteiligt:

MEWIS, Peter	PD DrIng. habil., TU Darmstadt, Darmstadt (Sprecher)
Kopmann, Rebekka	DrIng., Bundesanstalt für Wasserbau (BAW), Karlsruhe
Nujic, Marinko	DrIng., Ingenieurbüro Dr. Nujic, Samobor, Kroatien
RUETHER, Nils	Assoc. Prof. Dr., Department of Civil and Environmental Engineering, Faculty of Engineering, NTNU Norwegian University of Science and Technology, Trondheim
SIVIGLIA, Annunziato	Assoc. Prof. Dr., Department of Civil, Environmental and Mechani- cal Engineering, University of Trento, Trento
Söнngen, Bernhard	Prof. DrIng., Bad Schönborn (vormals Bundesanstalt für Wasserbau (BAW)), Karlsruhe
Veтscн, David F.	Dr., Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich, Zürich

Die Arbeitsgruppe ist dem DWA-Fachausschuss WW-2 "Morphodynamik und Sedimentmanagement" zugeordnet, dem die folgenden Mitglieder angehören:

PFEFFERKORN, Christel	DiplIng., Geschäftsführerin, PICON GmbH, Dresden (Obfrau)
HUBER, Nils	DrIng., Referatsleiter Flussbau (W2), Bundesanstalt für Wasserbau, Karlsruhe (Stellvertretender Obmann)
ARNOLD, Jens	DiplIng., bremenports GmbH & Co. KG, Bremerhaven
DETERING, Michael	DrIng., Detering & Partner, Werne
ETTMER, Bernd	Prof. DrIng., Hochschule Magdeburg-Stendal, FB Wasser- und Kreislaufwirtschaft, Magdeburg
Hahn, Jens	Dr. DiplGeogr., Bundesanstalt für Gewässerkunde, Referat G2, Koblenz
HILDEBRANDT, Ina	Dr. rer. nat., BGD ECOSAX GmbH, FB Gewässerbewirtschaftung / Limnologie, Dresden
Hilmer, Uwe	DiplIng., Technischer Leiter Umwelttechnik, Detlef Hegemann Umwelttechnik GmbH, Bremen
JAHNS, Christin	Dr., Sächsisches Staatsministerium für Energie, Klimaschutz, Umwelt und Landwirtschaft, Referat 44, Dresden
JANSON, Johannes von	Wolter Hoppenberg, Rechtsanwälte Partnerschaft mbB, Hamm
JENTSCH, Stefan	DiplIng., Landestalsperrenverwaltung des Freistaates Sachsen, Pirna
KÜHNE, Elke	DiplIng., Wasserstraßen- und Schifffahrtsamt Dresden, Projektgruppe GKE, Dresden
MEWIS, Peter	PD DrIng. habil., TU Darmstadt, Darmstadt
SEIDEL, Björn	Bauass. DiplIng., HPA Hamburg Port Authority AöR, Hamburg
Söнngen, Bernhard	Prof. DrIng., Bad Schönborn (vormals Bundesanstalt für Was- serbau, Karlsruhe)

DWA-M 540

Prof. DrIng., Universität Stuttgart, Institut für Wasser- und Umeltsystemmodellierung, Stuttgart
DiplIng. (FH), Hülskens Wasserbau GmbH & Co. KG, Bodenma- nagement, Wesel
DrIng., NLWKN-Bst. Norden-Norderney, Forschungsstelle Küste, Norderney

Projektbetreuer in der DWA-Bundesgeschäftsstelle:

Schrenk, Georg J. A.	DiplGeogr., Hennef
	Abteilung Wasser- und Abfallwirtschaft

Inhalt

Vorwort		3
Verfasser		5
Bilderver	zeichnis	9
Tabellenv	verzeichnis	11
Hinweis fi	ür die Benutzung	13
Einleitung	9	13
1	Anwendungsbereich	15
2	Begriffe	16
2.1	Definitionen	16
2.2	Abkürzungen	17
2.3	Formelzeichen	17
2	Die zu medellierende Elussmernhelegie	21
3		21
3.1 2.2	Rettformon und Effekte der Elucemernhologie	21
J.Z 2 2 1		21
3.Z.I	Liferformen	21
3.Z.Z		22
3.Z.3		22
3.2.4		23
3.2.5	Bettformen	23
3.2.6	Effekte aus gradiertem Transport	26
3.3		26
3.4	Schwierigkeitsgrade der morphodynamischen Modellierung	27
3.5	Menschliche Eingriffe	28
4	Physikalische Grundlagen, Modellgleichungen	28
4.1	Strömung	28
4.1.1	Strömungsmodelle	28
4.1.2	Definition der Sohlenschubspannung	28
4.1.3	Fließgesetze	28
4.1.4	Sohlenrauheit	30
4.1.4.1	Äquivalente Sandrauheit	30
4.1.4.2	Aufteilung der Rauheiten der Fließgewässersohle	30
4.1.4.3	Kornrauheit	32
4.1.4.4	Formrauheit	33
4.1.4.5	Sohlenformenschätzer (engl. roughness predictor)	33
4.1.4.6	Riffelfaktor	35
4.1.5	Sekundärströmungen	36
4.1.6	Implementierung der Reibungsbeiwerte bei unterschiedlichem Wandabstand	38
4.2	Geschiebetransport / Feststofftransportkapazität (Einkorn)	39
4.2.1	Vorbemerkung	39

4.2.2	Bewegungsbeginn
4.2.3	Bewegungsbeginn auf geneigter Sohle
4.2.4	Formeln der Transportkapazitäten
4.2.5	Einfluss der Sohlenneigung auf die Richtung des Geschiebetransports
4.2.6	Bodenevolutionsgleichung
4.2.7	Ungleichgewicht im Einkorn-Feststofftransport
4.2.8	Anpassungslänge im Geschiebetransport
4.2.9	Verfügbarkeit von Sedimenten in der Gewässersohle
4.3	Schwebstofftransport / Schwebstofftransportmodellierung
4.3.1	Sinkgeschwindigkeit von nicht kohäsivem Sediment
4.3.2	Beginn der Suspension
4.3.3	Suspensionskonzentration
4.3.3.1	Konzentrationsprofil im Gleichgewicht nach Rouse und Referenz- höhe "a"
4.3.3.2	Gleichgewichtskonzentration
4.3.3.3	Aufwirbelung von Sohlenmaterial
4.3.3.4	Einfluss von Transportkörpern an der Sohle
4.3.3.5	Die Schmidt-Zahl
4.3.4	Schwebstofftransportraten von Einkorn-Sediment
4.3.4.1	Gleichgewichtstransport
4.3.4.2	Auftreten von Ungleichgewichtstransport 56
4.3.4.3	Ungleichgewichtstransport in zweidimensionalen Modellen
4.3.5	Aufwirbelung von kohäsivem Sediment
4.3.6	Sedimentation von kohäsivem Sediment
4.4	Fraktionierter Transport
4.4.1	Beschreibung als Sohlenmaterial
4.4.2	"Equal Mobility"-Ansatz
4.4.3	"Hiding and Exposure" – Korrektur in Transportformeln
4.4.4	Ungleichgewicht in Mehrkornsimulationen
4.5	Sohlenmodelle
4.5.1	Mehrkornsimulation
4.5.2	Mischungsschichtkonzept, Einschichtmodelle
4.5.3	Zweischichtmodell
4.5.4	Dreidimensionale Sohle
5	Modellaufbau und Betrieb 68
5.1	Von der Fragestellung zum Modell
5.2	Anforderungen und Auswahl des numerischen Verfahrens
5.3	Modellierungsstrategien
5.4	Diskretisierung, Anfangs- und Randbedingungen (Numerik)
5.5	Kalibrierung
5.6	Validierung
5.7	Szenarienrechnungen
5.8	Interpretation der Ergebnisse
5.9	Zuverlässigkeitsanalyse und Sensitivitätsuntersuchungen

6	Beispiele für morphodynamische Modellierungen	83
6.1	Allgemeines	83
6.2	Analytische Lösungen	83
6.2.1	Vorbemerkungen	83
6.2.2	Verlagerung einer Düne bei stationärem Abfluss	83
6.2.3	Entwicklung einer kegelförmigen Düne	85
6.3	Plausibilitätstest, nicht erodierbare Flächen	87
6.4	Vergleich mit Laborversuchen	90
6.4.1	Vorbemerkungen	90
6.4.2	Anfangskolk	90
6.4.3	Kurvenkolk, 180°-Krümmer	92
6.4.4	Dammbruch in einem Kanal mit plötzlicher Aufweitung und beweglicher Sohle	95
6.4.5	Eigendynamische Aufweitung	98
6.4.6	Sedimentation infolge Geschiebezugabe	100
6.4.7	Entwicklung einer Deckschicht durch selektive Erosion	102
6.4.8	Rinnenversuch mit alternierenden Bänken	105
6.5	Vergleich mit morphologischen Veränderungen in der Natur	107
6.5.1	Vorbemerkungen	107
6.5.2	Donau unterhalb Wiens	108
6.5.3	3D-Morphodynamische Simulation eines sandigen Abschnitts der Donau	110
6.5.4	Modellierung des Abtrags der Schüttwälle in der Mittleren Isar unterhalb	
	des Oberföhringer Wehrs	111
Quellen und Literaturhinweise		119

Bilderverzeichnis

Bild 1:	Laufformen von Fließgewässern	21
Bild 2:	Alternierende Bänke in einem geraden Abschnitt der Oder oberhalb von Hohenwutzen	24
Bild 3:	Sohlenformen	25
Bild 4:	Widerstandsbeiwerte nach Darcy-Weisbach eines Laborgerinnes nach Messdaten von SIMONS & RICHARDSON (1961) als Funktion der Froude-Zahl des Korns	31
Bild 5:	Äquivalente Sandrauheit k_s in Abhängigkeit von mittlerer Korngröße d_{50} und Schubspanungsgeschwindigkeit unter der Annahme Fließtiefe h = 1 m nach YALIN & DA SILVA (2001) mit dem Programm "Rfactor" berechnet	35
Bild 6:	Beginn der Bewegung nach van Rijn im Shields-Diagramm für typisches Sediment in Wasser	40
Bild 7:	Richtung der Einzelkräfte, Strömung parallel zum Ufer	41
Bild 8:	Verlauf der dimensionslosen Transportkapazität ϕ über die dimensionslose Sohlenschubspannung Fr^* für fünf Formeln und Daten von Gilbert	46
Bild 9:	Sinkgeschwindigkeiten natürlicher Sedimente	51
Bild 10:	Beginn der Suspension und Beginn der Bewegung für Sand der Dichte 2,65 kg/l	52
Bild 11:	Suspensionskonzentrationsverteilung nach Rouse (1937)	53
Bild 12:	Definition des Referenzniveaus über einem mittleren Sohlenniveau nach VAN RIJN	54

Bild 13:	Messungen eines Konzentrationsprofils im Rhein
Bild 14:	Definitionsskizze der vertikalen Sedimentflüsse in einem 2D-Modell
Bild 15:	Verlauf der Funktion C_m/C_a aus Integration
Bild 16:	Abhängigkeit der kritischen Schubspannung für die Erosion kohäsiver Sedimente von der Dichte der Sedimente
Bild 17:	Vergleich der Mehrkornansätze
Bild 18:	Sohlenschichtung und Strömungsangriff auf die Mischsohle
Bild 19:	Dreidimensionale Sohle mit Mischungsschicht, die sich durch die festen Sohlenschichten bewegt
Bild 20:	Modellkomplexität in Anhängigkeit der Zeit- und Raumdiskretisierung
Bild 21:	Grundlagendaten und Netzerstellung
Bild 22:	Ausschnitt aus dem Gitternetz im Bereich eines Buhnenfelds
Bild 23:	Beispiel aus dem Gitternetz im Bereich des Brückenbauwerks
Bild 24:	Anfangs- und Endzustand der Düne mit stationärem Geschwindigkeitsfeld
Bild 25:	Anfangszustand für die Sohlenlage der kegelförmigen Düne als Draufsicht
Bild 26:	Resultierende Sohlenlage (Draufsicht) nach einer Simulationszeit von
Bild 27	Anfangszustand mit nicht erodierharem Sohlenbereich.
Bild 28.	Zeitliche Entwicklung der Sohlenlagen ausgehend von einer nicht geneigten
	Sohle bis zum Erreichen der Gleichgewichtssohle parallel zur Wassersniegellage unter Berücksichtigung eines nicht erodierbaren Horizonts
Bild 29.	Soblenlage im Anfangszustand und Lage des nicht erodierbaren Horizonts
Bild 30	Fraehnis der numerischen Simulation für den Rinnenversuch mit Kolkhildung
Bild 31.	Versuchsaufbau 180°-Krümmer
Bild 32:	Sohlenänderungen an den Querschnitten (a) 45°, (b) 90°, (c) 135°, und (d) 180° mit Transportformel von van Rijn, mit der Transportformel von van Rijn modifiziert
D:1 1 00	Mit hiding und exposure und WU et al. (2000) im Vergleich zu Messungen
BIIO 33:	Mittlere Korngroßen am guerschnitt 90° mit Transportformel von
Bild 3/+	Kanal mit nlötzlicher Aufweitung und Anfangszustand als Draufsicht 96
Bild 35:	Verlauf der Wasserspiegellage an den Punkten P1 bis P6 im Experiment
Bild 36:	Verlauf der Sohlenlage bei den Querprofilen CS1 ($x = 4,1$ m) und CS2 ($x = 4.4$ m, siehe Bild 34) im Experiment und in der numerischen Simulation
Bild 37:	Versuchshalle mit Versuchsgerinne und abschließendem Kunststoffprofil, Ansicht von unterstrom
Bild 38:	Geometrische Kenngrößen des dargestellten Versuchs
Bild 39:	Entwicklung der Sohlenlage und der Gerinnebreite bei einem konstanten Abfluss von 43 l/s
Bild 40:	Veraleich zwischen Simulations- und Messergebnissen
Bild 41:	Vergleich zwischen Simulations- und Messergebnissen. Querprofil bei x = 35 m 100
Bild 42:	Vergleich der gemessenen (dicke Linie) und berechneten Sohlenänderung zum Zeitpunkt $t = 7.200$ s, für MPM-Vorfaktor 4 und MPM-Vorfaktor 6; die Sohlenänderung wurde auf die Referenzhöhe $h = 0.223$ m bezogen
Bild 43:	Versuchsaufbau
Bild 44:	Ergebnis der Kalibrierung und der Validierung des Sohlengefälles
Bild 45:	Ergebnis der Kalibrierung und der Validierung der Kornzusammensetzung der Deckschicht

Bild 46:	Gemessene Längsprofile der Sohle am Ende des Versuchs. Differenz der gemessenen Sohlenlage auf der rechten und auf der linken Gerinneseite
Bild 47:	Zeitliche Änderung der Gerinnesohle (Längenmaßstab mit 0,5 skaliert) 107
Bild 48:	Sohlenänderung nach 10 Stunden 107
Bild 49:	Ganglinie 2002 am Pegel Wildungsmauer (Donau km 1894.7); magenta: Simulationszeitraum
Bild 50:	Gemessene Wassertiefen vor (02-1) und nach (02-2) dem Hochwasserereignis 2002 sowie die gemessenen (meas) und berechneten (calc) Sohlenänderungen
Bild 51:	Sieblinie des suspendierten Materials und des Sohlenmaterials 110
Bild 52:	Gemessene (links) und simulierte (rechts) Sohlenänderungen während eines Hochwassers mit 3.000 m³/s
Bild 53:	Schematische Skizze der Geschiebeumsetzung in das Unterwasserdes Oberföhringer Wehrs (1995/96)112
Bild 54:	Schüttwälle in der Isar bei Oberföhring: am 2. Mai 1996 und am 15. Mai 1996 . 112
Bild 55:	Schüttwälle in der Isar bei Oberföhring: am 6. Mai 1996 und am 15. Mai 1996 . 113
Bild 56:	Isarbett bei Oberföhring: am 9. August 1996 114
Bild 57:	Modellabschnitt
Bild 58:	Querprofil aus dem Modellierungsabschnitt mit beiden Schüttwällen 115
Bild 59:	Abflussganglinie für die 2D-Modellierung 116
Bild 60:	Zwei berechnete Querprofile P1 und P4 der Isar nach a) 1,8 Tagen;b) 5 Tagen und c) 6 Tagen117
Bild 61:	Berechnete (oben) und gemessene (unten) mittlere Sohlenhöhen der Isar unterhalb des Oberföhringer Wehrs

Tabellenverzeichnis

Tabelle 1:	Abgrenzung natürlicher morphologischer Formen	25
Tabelle 2:	Modellierbarkeit morphologischer Erscheinungen	26
Tabelle 3:	Umrechnung verschiedener Reibungsbeiwerte	29
Tabelle 4:	Typische Sinkgeschwindigkeiten	51
Tabelle 5:	Verwendete Kombinationen von Sedimenttransportformeln zur Berücksichtigung von fraktioniertem Transport	62
Tabelle 6:	Parameter des Strömungsmodells	78
Tabelle 7:	Parameter des morphodynamischen Modells	79
Tabelle 8:	Anfangs- und Randbedingungen für die Dünenverlagerung	83
Tabelle 9:	Gewählte morphodynamische Parameter für die Dünenverlagerung	85
Tabelle 10:	Anfangs- und Randbedingungen für die Dünenverlagerung	85
Tabelle 11:	Gewählte morpho- und hydrodynamische Parameter für die sternförmige Dünenausbreitung	86
Tabelle 12:	Anfangs- und Randbedingungen für den Plausibilitätstest für nicht erodierbare Flächen	88
Tabelle 13:	Gewählte morphodynamische Parameter für den Plausibilitätstest für nicht erodierbare Flächen	89
Tabelle 14:	Anfangs- und Randbedingungen für den Rinnenversuch Kolkbildung	90
Tabelle 15:	Gewählte morphodynamische Parameter für den Rinnenversuch Kolkbildung	91

Tabelle 16:	Anfangs- und Randbedingungen für den 180°-Krümmer	93
Tabelle 17:	Gewählte morphodynamische Parameter für den 180°-Krümmer	93
Tabelle 18:	Anfangs- und Randbedingungen für den Dammbruch mit plötzlicher Aufweitung	95
Tabelle 19:	Gewählte morphodynamische Parameter für den Dammbruch mit plötzlicher Aufweitung	96
Tabelle 20:	Anfangs- und Randbedingungen für den Großversuch "Weiches Ufer"	98
Tabelle 21:	Gewählte morphodynamische Parameter für den Großversuch "Weiches Ufer"	99
Tabelle 22:	Anfangs- und Randbedingungen für den Rinnenversuch Geschiebezugabe	100
Tabelle 23:	Gewählte morphodynamische Parameter für den Rinnenversuch Geschiebezugabe	101
Tabelle 24:	Anfangs- und Randbedingungen für den Rinnenversuch Sohlenabpflasterung	102
Tabelle 25:	Unterschiede der beiden simulierten Versuche	103
Tabelle 26:	Gewählte morphodynamische Parameter für den Rinnenversuch Sohlenabpflasterung	103
Tabelle 27:	Anfangs- und Randbedingungen für den Rinnenversuch mit alternierenden Bänken	105
Tabelle 28:	Gewählte morphodynamische Parameter für den Rinnenversuch mit alternierenden Bänken	106
Tabelle 29:	Gewählte morphodynamische Parameter für das Modell Donau unterhalb Wiens	109
Tabelle 30:	Gewählte morphodynamische Parameter für das Modell sandiger Donauabschnitt	111
Tabelle 31:	Gewählte morphodynamische Parameter für das Modell Abtrag der Schüttwälle	115

Hinweis für die Benutzung

Dieses Merkblatt ist das Ergebnis ehrenamtlicher, technisch-wissenschaftlicher/wirtschaftlicher Gemeinschaftsarbeit, das nach den hierfür geltenden Grundsätzen (Satzung, Geschäftsordnung der DWA und dem Arbeitsblatt DWA-A 400) zustande gekommen ist. Für ein Merkblatt besteht eine tatsächliche Vermutung, dass es inhaltlich und fachlich richtig ist.

Jeder Person steht die Anwendung des Merkblatts frei. Eine Pflicht zur Anwendung kann sich aber aus Rechts- oder Verwaltungsvorschriften, Vertrag oder sonstigem Rechtsgrund ergeben.

Dieses Merkblatt ist eine wichtige, jedoch nicht die einzige Erkenntnisquelle für fachgerechte Lösungen. Durch seine Anwendung entzieht sich niemand der Verantwortung für eigenes Handeln oder für die richtige Anwendung im konkreten Fall; dies gilt insbesondere für den sachgerechten Umgang mit den im Merkblatt aufgezeigten Spielräumen.

Normen und sonstige Bestimmungen anderer Mitgliedstaaten der Europäischen Union oder anderer Vertragsstaaten des Abkommens über den Europäischen Wirtschaftsraum stehen Regeln der DWA gleich, wenn mit ihnen dauerhaft das gleiche Schutzniveau erreicht wird.

Einleitung

Die Analyse und Prognose des Feststofftransports und damit die Morphodynamik der Fließgewässer, das heißt die Veränderung der Gestalt von Fließgewässern durch bettformende Prozesse, ist ein wichtiges Ziel flussbaulicher Untersuchungen. Hierzu werden in der heutigen Ingenieurpraxis überwiegend hydrodynamisch-numerische Strömungs- und Feststofftransportmodelle eingesetzt, wobei zumeist tiefengemittelt-zweidimensionale Modelle verwendet werden, die den Schwerpunkt des vorliegenden Merkblatts bilden.

Selbst wenn heute viele Fließgewässer durch anthropogene Eingriffe wie Begradigung, Uferschutz, Fluss- und Stauregelung, Bewirtschaftung der Sohlensedimente durch Baggern und Verklappen, Revitalisierungsmaßnahmen etc. stark überprägt sind, bleibt der Sedimenttransport als treibende Kraft der Morphodynamik meist aktiv und soll zum Beispiel zur ökologischen Aufwertung stark veränderter Gewässer sogar wieder verstärkt werden. Deshalb ist der Geschiebe- und Schwebstofftransport bei allen Gewässern mit konstruktiv nicht völlig unterbundenen bettbildenden Prozessen im Flussbau stets zu berücksichtigen. Dies vor allem, wenn die Nachhaltigkeit von Ausbau- und Unterhaltungsmaßnahmen überprüft und durch angepasste Maßnahmen wie zum Beispiel örtliche Sohlenbefestigungen und Feststoffbewirtschaftungen optimiert werden soll.

Diese Modelle haben hinsichtlich der Benutzerfreundlichkeit, zum Beispiel zur Begrenzung des Aufwands zur Erstellung von Modellen, der Stabilität und Genauigkeit der numerischen Berechnungen bei geeigneter Diskretisierung des Rechenaufwands auf üblichen PCs und der Präsentation der Berechnungsergebnisse inzwischen eine so gute Qualität erreicht, dass Anwender die Modelle verwenden können ohne umfänglich über die zugrundeliegenden fachwissenschaftlichen Grundlagen Bescheid zu wissen. Dies ist aber für eine problemgerechte Modellierung zwingend notwendig, vor allem wenn die meist parameterbehafteten, semiempirischen Ansätze zur Quantifizierung des Feststofftransports ausgewählt und durch Parameteranpassungen kalibriert werden müssen. Dies betrifft zum Beispiel die Ansätze zur Veränderung der Kornzusammensetzung der Sohle, die Bildung von Transportkörpern und damit zusammenhängend der Rauheit der Sohle, die fraktionierte Menge des Geschiebe- und Schwebstofftransports, die Wirkung von Längs- und Querneigungen der Sohle auf den Feststofftransport oder die Interaktion des Feststofftransports mit dem Strömungsfeld wie die Berücksichtigung von Sekundärströmungen bei der Ermittlung der transportwirksamen Sohlen-

Dieses Merkblatt behandelt die fachwissenschaftlichen Grundlagen und die Anwendung von mehrdimensionalen, numerischen Feststofftransportmodellen für Fließgewässer im Binnenbereich mit Schwerpunkt auf tiefengemittelte, zweidimensionale Modelle. Einzelne auf dem Markt verfügbare Modellverfahren werden nicht präferiert. Deshalb gibt es auch keine Hinweise auf deren spezielle Eigenschaften, zum Beispiel den angebotenen semiempirischen Ansätzen zur Modellierung der Feststofftransportphänomene oder deren konkrete Handhabung. Dies bleibt den Benutzerhandbüchern der Anbieter und deren Schulungen überlassen.

Dem Entwicklungsstand und Funktionsumfang gängiger Modellverfahren gemäß, beschränkt sich das Merkblatt auf große, insbesondere breite Fließgewässer, das heißt, solche mit generell flachen Längs- und Querneigungen der Sohle, wie sie bei alluvialen Gewässern mit rolligem Sohlensubstrat vorkommen. Gewässerberandungen aus bindigem Material wie Ton, bei denen es zum Beispiel zur Ausbildung von Steilufern, gegebenenfalls sogar Unterspülungen kommt, werden nicht betrachtet. Unberücksichtigt bleiben auch Kolkbildungen, die von ausgeprägt dreidimensionalen Strömungsstrukturen wie Hufeisenwirbeln an Pfeilern hervorgerufen werden.

ISBN: 978-3-96862-123-4 (Print) 978-3-96862-124-1 (E-Book)

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) Theodor-Heuss-Allee 17 · 53773 Hennef Telefon: +49 2242 872-333 · Fax: +49 2242 872-100 info@dwa.de · www.dwa.de