Themen

T2/2013

Wechselwirkungen zwischen Grund- und Oberflächenwasser

September 2013

September 2013

Theodor-Heuss-Allee 17 · 53773 Hennef · Deutschland Tel.: +49 2242 872-333 · Fax: +49 2242 872-100 E-Mail: info@dwa.de · Internet: www.dwa.de

Die Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) setzt sich intensiv für die Entwicklung einer sicheren und nachhaltigen Wasser- und Abfallwirtschaft ein. Als politisch und wirtschaftlich unabhängige Organisation arbeitet sie fachlich auf den Gebieten Wasserwirtschaft, Abwasser, Abfall und Bodenschutz.

In Europa ist die DWA die mitgliederstärkste Vereinigung auf diesem Gebiet und nimmt durch ihre fachliche Kompetenz bezüglich Regelsetzung, Bildung und Information sowohl der Fachleute als auch der Öffentlichkeit eine besondere Stellung ein. Die rund 14 000 Mitglieder repräsentieren die Fachleute und Führungskräfte aus Kommunen, Hochschulen, Ingenieurbüros, Behörden und Unternehmen.

Impressum

Herausgeber und Vertrieb: Satz:
DWA Deutsche Vereinigung für DWA
Wasserwirtschaft, Abwasser und Abfall e. V.

Theodor-Heuss-Allee 17 Quedlinburg Druck GmbH

53773 Hennef, Deutschland
Tel.: +49 2242 872-333

Fax: +49 2242 872-333 978-3-944328-20-1

E-Mail: info@dwa.de Gedruckt auf 100 % Recyclingpapier

© DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef 2013

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieser Publikation darf ohne schriftliche Genehmigung des Herausgebers in irgendeiner Form – durch Fotokopie, Digitalisierung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen werden.

Vorwort

Die vielfältigen Wechselwirkungen zwischen Grundwasserleitern und Oberflächengewässern sind entscheidend für den Haushalt und die Bewegung des Wassers und der darin transportierten Stoffe in Einzugsgebieten, Landschaftsräumen und Hydrotopen. Der weitaus größte Anteil des Wassers in den meisten Flüssen und anderen Oberflächengewässern der Erde sickert in diese aus den angrenzenden Grundwasserspeichern ein. Bei hohen Wasserständen durch Hochwasser erfolgt umgekehrt eine Rückspeicherung von Oberflächenwasser in die angrenzenden Grundwasserleiter. Diese Wechselwirkungen waren schon im 19. Jahrhundert bekannt, wie Bild 1 aus den "Grundlagen der Wasserbaukunst" des königlich preußischen Bauraths Gustav Tolkmitt (1898) eindrucksvoll demonstriert. Gleichwohl orientieren sich auch heute noch hydrologische Modelle, die Niederschlag-Abfluss-Prozesse oder den Wasserhaushalt beschreiben sollen, in der Praxis, aber auch im Wissenschaftsbereich, meist nur an Größe, Topographie und Morphologie der oberirdischen Einzugsgebiete, was zu groben Fehleinschätzungen führen kann.

Der Tag der Hydrologie 2002 in Suderburg stand unter dem Thema "Wechselwirkungen zwischen Grundwasserleitern und Oberflächengewässern" und zeigte in seinen Fachbeiträgen Möglichkeiten und Modelle für die Beschreibung und Quantifizierung der hydrologischen, hydraulischen, geochemischen und biologischen Prozesse zwischen Grund- und Oberflächenwasser auf. Hier wurde der Beschluss zur Gründung der Arbeitsgruppe gefasst. Aufgrund Einspannung der Mitglieder und der Vielseitigkeit und Komplexität der Thematik sind seitdem fast elf Jahre vergangen, in denen zahlreiche Verfahren und Modelle entwickelt und angewandt wurden. Das vorliegende Themenheft will den derzeitigen Stand auf diesem Gebiet zusammenfassen und mit Fallbeispielen unterlegen.

stab. Wo nämlich Flüsse vom Grundwasser gespeist werden, was überall der Fall ist, wo das Flussett die wasserleitende Schicht zertheilt und bis in die undurchlässige Schicht eingeschnitten ist, da ist der Grundwasserstand im Beharrungszustande höher als der Wasserspiegel des Flusses und gewöhnlich erhebt er sich mit der Entfernung vom Ufer ziemlich schnell über denselben. Schwillt nun der Fluss plötzlich an, so wird das Grundwasser zurückgestaut, es kann aber nur langsam folgen und so bildet sich in der Nähe des Ufers ein entgegengesetztes Gefälle, wobei das Steigen des Grundwassers je

nach dem Abstande vom Ufer noch mehr oder weniger lange andauert, wenn die Anschwellung im Flusse schon vorüber und daher bereits im Sinken ist. Abb. 1 veranschaulicht diesen Vorgang und

Bild 1: Wechselwirkungen zwischen Grundwasserspeicher und Fluss, Ausschnitt aus TOLKMITT (1898), S. 17

Verfasser

Der Themenband wurde von der DWA-Arbeitsgruppe HW-1.4 "Wechselwirkungen zwischen Grund- und Oberflächenwasser" im DWA-Fachausschuss HW-1 "Quantitative Hydrologie" erstellt, der folgende Mitglieder angehören:

FLECKENSTEIN, Jan Dr., Leipzig
LUO, Junfeng Dr., Berlin

MIEGEL, Konrad Prof. Dr., Rostock

NÜTZMANN, Gunnar Prof. Dr., Berlin, stellvertr. Sprecher

SCHÖNIGER, Matthias Prof. Dr., Braunschweig

Theis, Heinz Dr.-Ing., Koblenz

WALD, Joachim Dipl.-Ing., Hügelsheim

WITTENBERG, Hartmut Prof. Dr.-Ing., Suderburg/Lüneburg, Sprecher

Als Gäste haben mitgewirkt:

SALZMANN, Thomas Dr., Rostock
Mey, Silke Dr., Berlin
PFÜTZNER, Bernd Dr., Berlin

Projektbetreuer in der DWA-Bundesgeschäftsstelle:

BARION, Dirk Dipl.-Geogr., Hennef

Abteilung Wasserwirtschaft, Abfall und Boden

Inhalt

Vorwort	
Verfasser	
Bilderverz	eichnis
Tabellenve	erzeichnis
Abkürzung	gsverzeichnis
1	Einführung. 1
2	Hydrologische Prozesse und wasserwirtschaftliche Fragestellungen
2.1	Vielfalt der Wechselwirkungen zwischen Grund- und Oberflächenwasser
2.2	Grundlegende Mechanismen 1
2.3	GW-OW-Interaktionen bei verschiedenen Gewässertypen
2.3.1	Fließgewässer
2.3.1.1	Gefällestarke Oberläufe in Gebirgsregionen
2.3.1.2	Flüsse in Karstgebieten
2.3.1.3	Flüsse im Lockergesteinsbereich
2.3.2	Seen
2.3.3	Feuchtgebiete
2.3.4	Küstengewässer
2.4	Anthropogene Eingriffe
2.5	Relevante wasserwirtschaftliche Fragestellungen
3	Austauschprozesse
3.1	Hydraulische Mechanismen des Austauschs
3.2.	Kolmation
3.2.1	Grundlegende Aspekte
3.2.2	Einflussgrößen und Prozesse
3.3	Hyporheischer Austausch
3.4	Austausch zwischen Seen und Grundwasser
3.5	Austausch oberflächennahen Grundwassers mit der ungesättigten Zone
3.6	Landnutzung und Gewässermanagement
3.7	Raum- und Zeitmuster – Skalenabhängigkeit
4	Methoden zur Quantifizierung des Grundwasser-Oberflächenwasseraustauschs 5
4.1	Direkte Bestimmung des Austauschflusses
4.1.1	Bestimmung des Austauschflusses mit Flusskammern (Seepage Meter)
4.1.2	Bachbettlysimeter
4.1.3	Infiltrometer
4.2	Indirekte Bestimmung des Austauschflusses
4.2.1	Feldmethode
4.3	Wasserbilanz basierte Verfahren
4.3.1	Abflussdifferenzmessung
4.3.2	Die Uferspeicherung nach Ubell
4.4	Tracermethoden
4.4.1	Wärme als Tracer
4.4.2	Isotope als Tracer
4.5	Ganglinienanalyse und Separation des Basisabflusses

5	Modellierung des GW-OW-Austauschs	74
5.1	Hydrologische Modelle	74
5.2	Transient-Storage-Modelle & Simulation des hyporheischen Austauschs	74
5.3	Kopplung von Fließgewässer- und Grundwassermodellen	80
5.4	Integrierte Modelle	83
6	Zusammenfassung und Ausblick	86
Anhang	Fallbeispiele	87
A.1	Beiträge des GW-Abflusses am HW-Abfluss im Nordostdeutschen Tiefland	87
A.2	Flusswasserverluste im Unterlauf von Warnow und Nebel	89
A.3	Modellgestützte Ermittlung der langzeitigen Grundwasserzutritte am Elbe-Havel-Kanal	93
A.4	Landschaftswasserhaushalt im Einzugsgebiet des Lietzengrabens	97
A.5	Grundwasser-See-Austausch in einem Restsee des Braunkohletagebaus	101
A.6	Fremdwasserzufluss	107
A.7	Bestimmung der Uferspeicherung nach Ubell – Beispiel Neuwieder Becken	109
A.8	Hyporheischer Austausch – Sauerbach	111
A.9	Projektbeispiel "Ausbau der Unteren Saale"	116
A.10	Wiedervernässung eines Feuchtgebietes	122
6.11	Grundwassermodell HRB Plüderhausen	129
A.12	Wechselwirkungen zwischen Oberflächengewässer und Grundwasser – Mittellandkanal – Drömling	136
A.13	Polderbewirtschaftung	139
Literatur		146
Bilder	verzeichnis	
Bild 1:	Wechselwirkungen zwischen Grundwasserspeicher und Fluss	3
Bild 2:	GW-OW-Interaktionen bei einem Fließgewässerabschnitt mit Zustrom von Grundwasser	13
Bild 3:	GW-OW-Interaktionen bei einem Fließgewässerabschnitt mit Uferfiltration	14
Bild 4:	Vorgang der Seihwasserbildung	14
Bild 5:	Strömungsbahnen des Grundwassers in einem geschichteten Lockergestein	15
Bild 6:	Ausbildung temporärer Grundwasserkuppen nach Ereignissen der GWN in Bereichen mit geringen Grundwasserflurabständen	16
Bild 7:	Ausbildung von lokalen Grundwasserabsenkungen durch Transpiration ufernaher Vegetation in Bereichen mit geringen Grundwasserflurabständen	17
Bild 8:	Veranschaulichung der Phänomene der Influenz als Abstrom von Flusswasser in das GW und Effluenz als Eintritt von GW in das Fließgewässer anhand von Grundwassergleichen	18
Bild 9:	Ursachen für Fließvorgänge in der hyporheischen Zone	19
Bild 10:	Ausbildung verschiedener Fließpfade in Gebirgstälern	20
Bild 11:	Querschnitt durch ein Gebirgstal mit Ausbildung einer Sickerfläche am linksseitigen Hangfuß und Ausstreichen der GW-Oberfläche im Bereich des Mittelwasserbettes auf der rechten Talseite	21
Bild 12:	Querschnitt durch ein Flusstal im Tiefland	22
Bild 13:	Grundwassergleichen der Hardau in der Lüneburger Heide, unter- und oberirdische Wasserscheiden	23
Bild 14:	Veranschaulichung der Uferspeicherung beim Durchgang von Hochwasserwellen	24
Bild 15:	Typen der Wechselwirkungen von Seen mit dem GW	25
Bild 16:	Abweichungen der lokalen Austauschprozesse bei Seen von den regionalen Strömungsmustern	26
Bild 17:	Speisung von Feuchtgebieten durch oberflächennahes GW, Hangwasser, Flusswasser	
•	oder Niederschlag	27

Bild 18:	Veränderung der GW-OW-Interaktionen an einem Fluss durch Inbetriebnahme eines Entnahmebrunnens		
Bild 19:	Konzeptionelle Vorstellung zum Austausch zwischen Grundwasser und Oberflächengewässer		
Bild 20:	Modellvorstellungen über die Abhängigkeit der Austauschrate q von der Höhendifferenz Δh zwischen GWO und Flusswasserspiegel		
Bild 21:	Zusammenhang zwischen Potenzialdifferenz Δh und Austauschfluss q für verschiedene Konfigurationen von Fluss- und Grundwasserstand		
Bild 22:	Prinzipskizzen zur äußeren und inneren Kolmation		
Bild 23:	Schematischer Sohlenaufbau einer Gewässersohle		
Bild 24:	Ablauf der Feinsedimenteinlagerung bei innerer Kolmation		
Bild 25:	Schematische Darstellung des Austausches zwischen Fluss und Grundwasser über die schattiert dargestellte hyporheische Zone		
Bild 26:	Muster des morphologisch gesteuerten hyporheischen Austausches		
Bild 27:	Räumliche Verteilungsmuster des Grundwasserzustroms zu einem See bei homogenen und isotropen Aquiferen ohne (A.) und mit (B.) Muddeauflage		
Bild 28:	Schematische Darstellung einer Linse grobkörnigen Materials als präferentieller Fließweg des Grundwassers in einen See		
Bild 29:	Aufbau (A & C), Funktionsweise (B) und Anwendung einer Flusskammer (seepage meter) in einem sauren Tagebaurestsee, siehe Fallbeispiel 6.5		
Bild 30:	Schema des Aufbaus eines Bachbettlysimeters		
Bild 31:	Schema des Aufbaus eines Infiltrometertopfes		
Bild 32:	a): Taucherschacht "Kaiman" b): Im Taucherschacht auf der Rheinsohle		
Bild 33:	Berechnungsmethodik der Uferspeicherung durch Volumenbetrachtung		
Bild 34:	Schematische Darstellung des Einsatzes eine DTS-Messsystems in einem See mit Grundwasserzu- und -abstrom		
Bild 35:	Temperaturverteilungen bei In- und Exfiltration in der hyporheischen Zone		
Bild 36:	Schema einer Temperaturmesslanze		
Bild 37:	Aufbau und Prinzip einer Einstichsonde zur Bestimmung vertikaler Temperaturprofile in Flussbett- und Seesedimenten		
Bild 38:	Gemessenes Temperaturprofil und optimierte Anpassungskurve		
Bild 39:	a) Temperaturprofil am 5.2.1990 b) Temperaturprofil am 21.2.1990		
Bild 40:	Schnitt durch ein Einzugsgebiet mit ungespanntem Grundwasserleiter		
Bild 41:	Ganglinie täglicher Durchflüsse am Pegel Göttingen/Leine im Wasserwirtschaftsjahr 1986 mit typischen Rezessionen		
Bild 42:	Abtrennung des Basisabflusses von einer Ganglinie täglicher Abflüsse, R verlängerte Rückgangslinien, Ü Übergangsbereich, Grundwasserneubildung		
Bild 43:	Separation des Basisabflusses QB, Grundwasserneubildung GWN, Grundwasserspeicherung GWS und Grundwasserstand		
Bild 44:			
Bild 45:	Rückgang des Grundwasserabflusses (Trockenwetterganglinien) in einem bewaldeten Einzugsgebiet, Einfluss der Verdunstung		
Bild 46:			
Bild 47:	Grundprinzip des "transient storage"- Ansatzes		
Bild 48:	Gekoppelte Simulation turbulenter Strömung im offenen Gerinne und der Durchströmung des Flussbettsediments bei unterschiedlichen Abflussbedingungen, A) Simulierter Wasserspiegel im Gerinne, B) Druckverteilung an der Wasser-Sediment-Grenzfläche (hydrostatischer + dynamischer Druck),		
	C) Ausbreitung eines konservativen Tracers im Flussbettsediment (hyporheische Zone)		

Bild 49:	Anwendung des "Leakage" Prinzips für die Infiltration und Grundwasserexfiltration im System Fließgewässer-Grundwasserleiter	80
Bild 50:	Die Kopplung zwischen Oberflächenwasser- und Grundwassermodell wird über eine interne Randbedingung (RB) verwirklicht	81
Bild 51:	Funktionsweise der externen Kopplung am Beispiel zweier verbundener Modellknoten	8
Bild A.1:	Veranschaulichung der beiden manuellen Separationstechniken man.1 und man.2	88
Bild A.2:	Relative Anteile des mit vier unterschiedlichen Vorgehensweisen GW-Abflusses RG am Gesamtabfluss R für ausgewählte HW-Ereignisse	89
Bild A.3:	Schematische Darstellung des Unterlaufs der Warnow mit ihren Nebenflüssen und Angaben zum mittleren Durchfluss	9:
Bild A.4:	Nebelkanal und Alte Nebel zwischen Lüssow und Bützow-Wolken	91
Bild A.5:	Darstellung der Randbedingungen bei der Modellierung der Uferfiltration	93
Bild A.6:	Lage des Untersuchungsgebietes	94
Bild A.7:	Geometrie und Randbedingungen	94
Bild A.8:	Austauschraten für die Jahre 1966-96 in der Stauhaltung Zerben	95
Bild A.9:	Austauschraten für die Jahre 1966-96 in der Stauhaltung Wusterwitz	96
Bild A.10:	Austauschraten für die Jahre 1966-96 in dem südöstlichen Grabensystem	96
Bild A.11:	Simulierte Austauschraten für verschieden Baggerseegrößen und Betriebswasserstände	97
Bild A.12:	Kernbereich des Lietzengraben-Einzugsgebiets	98
	Gekoppeltes hydrologisches Modell ArcEGMO – PSCN – ASM	99
Bild A.14:	Räumliche Verteilung der Grundwasserneubildungsdifferenzen aus grundwasserferner Situation und Ausgangssituation	100
Bild A.15:	Auswirkung der unterschiedlichen Fließwege auf die Erhöhung der Grundwasseroberfläche	10
Bild A.16:	Abbaugebiete im mitteldeutschen Braunkohlerevier und Lage des Untersuchungsgebiets	102
Bild A.17:	Bathymetrie von RS77, Lage der Flusskammern sowie bestimmte Austauschraten für das Jahr 2008	103
Bild A.18:	Gemessene und simulierte Chloridprofile sowie invertierte Austauschraten an den Standorten D, G, I und O. Positive Werte stellen einen aufwärtsgerichteten Fluss dar	104
Bild A.19:	A) Auslagen des Glasfaserkabels für die DTS-Messungen und Positionen naher Flusskammern, B) gemessene Temperaturen entlang des Kabels (die stärkste Anomalie mit T > 8 °C im tiefsten Bereich der West-Ost Auslage ist aus Skalierungsgründen nicht dargestellt), C) Temperaturanomalien im Vergleich zu mittleren Austauschraten aus Flusskammermessungen und die daraus abgeleiteten generellen Austauschmuster	106
Bild A.20:	Abtrennung des Basisabflusses QB, Pegel Bienenbüttel Ilmenau, 1999	107
Bild A.21:	Abtrennung des grundwasserbürtigen Basisabflusses (Fremdwasserabflusses) von den Kläranlagenzuflüssen aus der Gemeinde Ilmenau, 1999, R Rückgangslinien	108
Bild A.22:	Berechnete Grundwasserspeicherung S des Einzugsgebietes und ermittelter Fremdwasserzufluss aus der Gemeinde Ilmenau der Jahre 1999-2000	108
Bild A.23:	Neuwieder Becken mit Lage des Messprofils	109
Bild A.24:	Summenlinien der durch die Hochwasserwelle verursachten Grundwasservorratsänderungen	110
Bild A.25:	Durchfluss zwischen Rhein und Grundwasserleiter beim Ablauf der Hochwasserwelle	110
Bild A.26:	Schematisierte Verhältnisse beim Eindringen von Flusswasser ins Grundwasser im Verlauf eines Hochwasserereignisses	113
Bild A.27:	Sohlhöhe, Grundwasserspiegel, elektrische Leitfähigkeit (EC) des Bachwassers und Abfluss im Längsprofil des Bachverlaufs	112
Bild A.28:	Positionierung der LF-Logger und modellierte Flussabschnitte (R-1 bis R-5) entlang des Sauerbachs und Ergebnisse der Gewässerstrukturgütekartierung	113
Bild A.29:	Gemessene und simulierte Tracerdurchbruchskurven des zweiten Versuchs	114
Bild A.30:	Sensitivität der OTIS-Modellierung auf die Parameter As und α . A/C:Tracerdurchbruch mit veränderten Parametern. B/D: Güte der Anpassung bei veränderten Parametern	115
Bild A.31:	Lage der Berechnungsknoten des Fließgewässermodells im GW-OW-Modell "Untere Saale"	117
Bild A.32:	Stationäre Kalibrierung des GW-OW-Modells zum Ausbau der Unteren Saale für die Situation am	
	15.10.1996 – gemessene Grundwasserstände und berechnete Grundwassergleichen	118

Bild A.33a	: "Leakage"-Faktoren für Exfiltration aus der Kalibrierung für das hydrologische Jahr 1997	119
Bild A.33b	: "Leakage"-Faktoren für Infiltration aus der Kalibrierung für das hydrologische Jahr 1997	120
Bild A.34:	Instationäre Kalibrierung des GW-OW-Modells zum Ausbau der Unteren Saale für das hydrologische Jahr 1997 – Vergleich gemessener und berechneter Grundwasserstände (Ausschnitt)	121
Bild A.35:	Die Wolfsberger Seewiesen am 17. August 2011 nach Wochen mit extremen Niederschlägen	122
Bild A.36:	Einzugsgebiet der Kösterbeck ostsüdöstlich von Rostock mit den Wolfsberger Seewiesen und seinem Zwischeneinzugsgebiet	123
Bild A.37:	Simulierte Ganglinien des Grundwasserflurabstands ohne Einstau der Kösterbeck und für verschiedene Zielwasserstände an einem ausgewählten Beobachtungspunkt	126
Bild A.38:	Grundwasserflurabstände im Untersuchungsgebiet ohne Einstau	127
Bild A.39:	Grundwasserflurabstände im Untersuchungsgebiet bei maximalem Einstau	128
Bild A.40:	Übersicht Untersuchungsgebiet	129
Bild A.41:	Schematische Darstellung der Kopplung von HYDRET und MODFLOW	130
Bild A.42:	Stationäre Modellanpassung Stichtag 11.11.2010	132
Bild A.43:	Vergleich berechneter mit gemessenen Grundwasserständen	133
Bild A.44:	Berechnete Differenzen der max. GW-Potenziale (HQ100), ohne Maßnahmen	134
Bild A.45:	Berechnete Differenzen der max. GW-Potenziale (HQ100), mit Maßnahmen	135
Bild A.46:	Übersicht zum Modellgebiet Modellnetz mit hydraulischen Parametern, die im Modell als Gewässerrandbedingung berücksichtigten Gewässernetz sowie die simulierten mittleren GW-Gleichen	137
Bild A.47:	Differenzen der berechneten und gemessenen Grundwasserstände sowie Häufigkeit der Differenzen	138
Bild A.48:	Vergleich der berechneten GW-Ganglinien mit den entsprechenden Messungen in ausgewählten GW-Messstellen; die Ganglinie des Kanalwasserstands sowie die Ganglinien der simulierten Austauschrate in den betroffenen Kanalabschnitten	138
Bild A 40.	Flüsse, Polder und Bauwerke im Modellgebiet	139
	Modellkonzept	140
	Bestimmung der Länge und Profile der Teileinzugsgebiete	141
	Beispiel Komponente "Bauwerke/Deichbreschen"	142
	Gesamtmodell MIKE11	143
	Grundwassermodell FEFLOW	144
	Gekoppeltes Gesamtmodell	145
Diid 11.5/.	Genoppered Gestimmodell	173

Tabellenverzeichnis

Tabelle 1:	Skalenebenen und Einflussfaktoren	53
Tabelle 2:	Überblick über einige voll integrierte physikalisch begründete Modelle	84
Tabelle A.1:	Anteil des GW-Abflusses am HW-Abfluss in ausgewählten Einzugsgebieten	88
Tabelle A.2:	Eingabeparameter, modellierte Parameter und Anpassungsgüte der beiden Tracerversuche. Ratio PE/SD – Verhältnis aus geschätztem Parameter und dessen Standardabweichung; RSS – Summe der quadrierten Abweichung aus modellierter und gemessener Konzentration	114

Abkürzungsverzeichnis

Abkürzung	Erläuterung
EZG	Einzugsgebiet
GW	Grundwasser
GWF	Grundwasserflurabstand
GWL	Grundwasserleiter
GWN	Grundwasserneubildung
GWO	Grundwasseroberfläche
HW	Hochwasser
ow	Oberflächenwasser

1 Einführung

In der praktischen Wasserwirtschaft wurden das Oberflächenwasser (OW) und das Grundwasser (GW) lange Zeit als vollkommen eigenständige Ressourcen behandelt. Nahezu alle Arten von Oberflächengewässern stehen jedoch in Wechselbeziehung mit dem Grundwasser. Eine Ursache für die ungenügende Wahrnehmung dieser Interaktionen dürfte darin zu sehen sein, dass sie sich nur schwer beobachten und messtechnisch erfassen lassen. Die meisten Austauschprozesse spielen sich in der räumlich eng begrenzten Übergangszone an der Sohle von Oberflächengewässern ab, die nur schwer zugänglich ist. Dies hat dazu beigetragen, dass sie lange Zeit bei wasserwirtschaftlichen Entscheidungen vernachlässigt oder sogar ignoriert wurden. Maßnahmen waren dadurch häufig unwirksam und manche Probleme nicht lösbar.

Mit dem Erkenntnisfortschritt bei der Erforschung hydrologischer Prozesse in Landschaften und Einzugsgebieten (EZG) wurde zunehmend klar, dass sich beide Ressourcen gegenseitig beeinflussen und sich viele wasserwirtschaftliche Fragestellungen nur befriedigend beantworten lassen, wenn die Wechselwirkungen zwischen Grund- und Oberflächenwasser (im Folgenden kurz: GW-OW-Interaktionen) Berücksichtigung finden. Seit einigen Jahren ist deshalb ein wachsendes wissenschaftliches und praktisches Interesse an diesen Wechselwirkungen zu verzeichnen. Sie betreffen nicht nur den quantitativen Wasseraustausch zwischen den Oberflächen- und Grundgewässern, sondern auch die damit verbundenen chemischen Prozesse sowie die Folgen für die Gewässerlebewelt, die Ufervegetation und Pflanzenwelt in Überschwemmungsgebieten und nicht zuletzt für das Funktionieren des Gewässerökosystems als Ganzes. Meist lassen sich die damit verbundenen wasserwirtschaftlichen Aufgabenstellungen nur durch interdisziplinäre Lösungsansätze bewältigen.

Trotz der wachsenden Anzahl an entsprechenden Untersuchungen auf diesem Gebiet sind nach wie vor Erkenntnislücken über die Prozessabläufe bei den GW-OW-Interaktionen festzustellen. Am umfassendsten sind bisher die Verknüpfungen zwischen Fließgewässern und angrenzenden alluvialen Grundwasserleitern (GWL) in Lockergesteinen untersucht worden, die seit über 100 Jahren einen Untersuchungsschwerpunkt darstellen, angefangen bei BOUSSINESQ (1877) bis in die Gegenwart (WINTER et al. 1998). Diesbezüglich steht ein umfassendes Instrumentarium an Berechnungsverfahren und Modellen zur Verfügung.

Die GW-OW-Interaktionen sind komplex und vielfältig. Sie betreffen sowohl die Wassermenge, als auch die Wasserqualität. In der Mehrzahl der Fälle wird OW durch GW und die in ihm gelösten Stoffe gespeist, in anderen OW zu Grundwasserneubildung (GWN) mit entsprechenden Folgen für die Grundwasserqualität. Wasserentzug aus einem der beiden Systeme kann zur Zehrung in dem jeweils anderen führen und umgekehrt. Eine effektive Wasserbewirtschaftung ist folglich nur unter Berücksichtigung der bestehenden Zusammenhänge möglich. Umgekehrt sollte man sich bewusst sein, dass durch menschliche Aktivitäten in sehr unterschiedlicher Form auf dieses Wechselspiel zwischen Oberflächen- und Grundgewässern Einfluss genommen wird.

Die nachfolgenden Darstellungen zu den GW-OW-Interaktionen beschränken sich auf die quantitativen Aspekte des Wasseraustauschs zwischen Oberflächen- und Grundgewässern. Chemische und ökologische Fragestellungen werden nur vereinzelt und dann in grundsätzlicher Form angesprochen. Ihre umfassende Behandlung würde den Rahmen der vorliegenden Schrift bei Weitem sprengen.

Selbst bei der Behandlung quantitativer Aspekte kann der Anspruch auf Vollständigkeit nicht befriedigt und nur ein Überblick über die wichtigsten Zusammenhänge gegeben werden. Mit diesen Darstellungen ist der fachkundige Leser angesprochen, der bereits ein Grundverständnis über hydrologische Prozesse in Einzugsgebieten und Grundwassersystemen besitzt. Es geht also vorrangig um die Herausarbeitung von Besonderheiten, die bei den GW-OW-Interaktionen zu beachten sind, und um ein weiterführendes Prozessverständnis (Abschnitt 2.3). Aufgrund der Komplexität der Systeme, in denen sich GW-OW-Interaktionen abspielen, sind nachfolgend an vielen Stellen vereinfachende Beschreibungen und starke Abstraktionen erforderlich bzw. unvermeidbar. Dies gilt insbesondere für einige bildliche Darstellungen (z. B. Bilder 6 und 7).

Dieses Übersichtskapitel stützt sich ganz wesentlich auf die Arbeiten von WINTER (1995) und WINTER et al. (1998). Beide Beiträge vermitteln einen Überblick über GW-OW-Interaktionen unter besonderer Berücksichtigung von Forschungsarbeiten in den USA. Ihnen konnten Anregungen zum Aufbau dieses Abschnittes und zu den inhaltlichen Abhandlungen entnommen werden. Im Falle von allgemeingültigen Darstellungen wird nachfolgend verzichtet, bei jedem gegebenen Bezug auf beide Beiträge zu verweisen. Eine wichtige Grundlage bildete daneben der Tagungsband "Wechselwirkungen zwischen Grundwasserleitern und Oberflächengewässern" zum Tag der Hydrologie 2002 in Suderburg (WITTENBERG & SCHÖNIGER 2002), der als Querschnitt über Forschungsarbeiten zu dieser Problematik in Deutschland zu Beginn dieses Jahrhunderts angesehen werden kann.