

Taschenbuch der **Stadtentwässerung**

Taschenbuch der Stadtentwässerung

32. verbesserte Auflage herausgegeben von Norbert Jardin

unter Mitarbeit von

Peter Baumann (Kapitel 5.8.2)

Michael Becker (Kapitel 1.6, 1.7, 1.8 und 1.9)

Bert Bosseler (Kapitel 3)

Peter Cornel (Kapitel 4.5 und Kapitel 5.9)

Franz-Bernd Frechen (Kapitel 4.7.1)

Thomas Grünebaum (Kapitel 5.7.6)

Ralf Klopp (Kapitel 5.1)

Julia Kopp (Kapitel 5.10.14 und 5.10.15)

Jörg Londong (Kapitel 5.12 und 5.13)

Petra Podraza (Kapitel 6.4)

Karl-Heinz Rosenwinkel (Kapitel 5.11)

Arnd Sadowski (Kapitel 5.10.10)

Johannes Müller-Schaper (Kapitel 5.10.5)

Christian Schaum (Kapitel 4.5)

Theo Schmitt (Kapitel 1.3, 1.4 und 1.5)

Dieter Thöle (Kapitel 5.18)

Michael Weyand (Kapitel 6.2.1 und 6.2.2)

Joanna Will (Kapitel 5.1)

Mit 155 Abbildungen, 8 Tafeln und 76 Tabellen

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über **www.dnb.de** abrufbar.

Taschenbuch der Stadtentwässerung Herausgeber: Norbert Jardin 32. Auflage 2018

ISBN: 978-3-8356-7314-4 (Print) ISBN: 978-3-8356-7315-1 (eBook)

© 2018 DIV Deutscher Industrieverlag GmbH Friedrich-Ebert-Straße 55, 45127 Essen, Deutschland Telefon: +49 201 820 02-0, Internet: www.di-verlag.de

Projektmanagement: Sabina Urban Lektorat: Tatjana Holzenhauer

Satz: Melanie Zöller

Herstellung und Umschlaggestaltung: Nilofar Mokhtarzada Titelbild: Ruhrverband, Gursch Ross, ifoto-2402050a-003113

Druck: Druckerei Chmielorz GmbH, Wiesbaden

Das Werk einschließlich aller Abbildungen ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Erwerb berechtigt nicht zur Weitergabe des eBooks an Dritte.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung.

Vorwort

Vorwort

Dieses Buch wurde zuerst 1906, also vor über 100 Jahren geschrieben. Es hatte den Zweck, einigen jungen Ingenieuren der damals gegründeten Emschergenossenschaft in Essen in kurzer Form die Unterlagen zu geben, die man für die Ableitung und die Reinigung des Abwassers eines engbesiedelten Industriegebietes brauchte. Die Grundregel der Abwassertechnik war dabei das "Frischhalten", das damals noch ein ziemlich neuer Begriff war. Daraus entstanden die "offenen Abwasserkanäle" und die "geruchlosen Klärwerke", die aus zweistöckigen Absetzbecken, verbunden mit Schlammfaulräumen und Trockenplätzen bestanden.

Nach einem Entwurf von 1910 wurde dann der Ruhrverband in Essen gegründet. Er übernahm die Aufgabe, den Ruhrfluss reinzuhalten, der das Trinkwasser für das große Industriegebiet zu liefern hat. Als Folge dieser Arbeiten hatte sich das Buch dann besonders mit den biologischen Reinigungsverfahren zu beschäftigen und später mit den Selbstreinigungsvorgängen im Flusswasser. Das Buch wurde 40-mal übersetzt. Es ist insgesamt in 20 Sprachen erschienen. Sämtliche Ausgaben können in der "Historischen Sammlung" des Ruhrverbands in Essen-Rellinghausen besichtigt werden. Wesentlichen Einfluss hatte das Buch: Imhoff and Fair "Sewage Treatment". Darin hat Gordon M. Fair, Cambridge, das Buch für amerikanische Verhältnisse umgearbeitet. Besonders sind die von Fair entwickelten Rechnungsverfahren für die Selbstreinigung der Gewässer zu nennen, die dann auch in das deutsche Buch übernommen wurden.

Karl Imhoff, der Begründer des Buches, ist nach Durchsicht der 21. Auflage am 28. September 1965 gestorben. Seinen Beitrag zum Gewässerschutz beschreibt G. Annen in "Wegbereiter der Bautechnik", VDI-Verlag, Düsseldorf 1990. Die Bearbeitung des Buches lag seither bei seinem Sohn, Klaus R. Imhoff. Die 30. und 31. Auflage haben Klaus R. Imhoff und Norbert Jardin, Technischer Vorstand des Ruhrverbands, gemeinsam herausgegeben. Bei der nun vorliegenden 32. Auflage liegt die Herausgeberschaft bei Norbert Jardin. Weiterhin haben die auf der Titelseite genannten Mitarbeiter mitgewirkt.

Auch in der neuen 32. Auflage hat das Buch den Grundsatz beibehalten, dass schwierige Formeln und zeitraubende Ausrechnungen vermieden werden. Wo es geht, werden nur Erfahrungszahlen angegeben, nach denen man sich richten kann. Aus den Schaulinien lassen sich viele Fragen mit einem Blick und mit genügender Genauigkeit beantworten, da die Genauigkeit der Berechnung nicht größer zu sein braucht als die der Annahmen. Über 2000 Hinweise auf die Literatur des Fachgebiets setzen den Leser instand, an jedem Punkt in Einzelheiten vorzustoßen, wo ihm der Text nicht ausreicht.

Da das Buch auch sehr häufig in Entwicklungsländern benutzt wird, werden neben den modernen kostenträchtigen Behandlungsverfahren entsprechend dem Stand der Technik auch einfachere Lösungswege für Entwicklungsländer aufgezeigt.

Gegenüber der 31. Auflage von 2009 ist das Buch wieder in allen Abschnitten verbessert und auf den heutigen Stand ergänzt worden. Besonders zu erwähnen sind folgende Punkte:

- · Grundsätze der Stadtentwässerung
- · Berechnung des Leitungsnetzes
- Tragverhalten von Abwasserkanälen
- · Abwasser als Wertstoff
- · Kosten der Abwasserreinigung
- Gerüche
- · Beschaffenheit des Abwassers
- Sandfang
- · Verfahren mit belebtem Schlamm
- Membranbelebungsverfahren
- Weitergehende Stickstoffelimination
- Elimination von Mikroverunreinigungen
- Bemessung und Auslegung von Belebungsanlagen
- Bemessung von Belebungsanlagen nach dem DWA-Arbeitsblatt A 131
- Automatisierung des Belebungsverfahrens
- Einsatz der dynamischen Simulation für Planung und Betrieb kommunaler Belebungsanlagen
- Abwasserwiederverwendung
- Schlammanfall
- · Klärschlammdesintegration
- Gasgewinnung, Heizung und Gasverwertung
- Konditionierung des Schlammes
- Maschinelle Entwässerung des Schlammes
- Schlammwasserbehandlung
- Landwirtschaftliche Klärschlammverwertung
- Gewerbliches Abwasser

- Kleinkläranlagen, dezentrale Abwasserbehandlung
- Neuartige Sanitärsysteme
- · Energetische Effizienz
- Die Europäische Wasserrahmenrichtlinie
- Oberflächengewässerverordnung
- Badegewässerrichtlinie
- TMDL-Konzept der USA
- · Ansprüche des Gewässers
- Normung
- DWA-Regelwerk

Essen, im Oktober 2017 Professor Dr.-Ing. Norbert Jardin

Inhalt

Erster	Teil: Stadtentwässerung	1
1.	Grundsätze der Stadtentwässerung	1
1.1	Kanalnetz	1
1.2	Pumpwerke	8
1.3	Regenwasserbehandlung	11
1.3.1	Allgemeines	11
1.3.2	Planungsgrundsätze	12
1.3.3	Emissionsbezogene Zielgrößen für Regenwetterabflüsse	15
1.3.4	Bemessungsverfahren im Trenn- und Mischsystem	17
1.4	Behandlung von Niederschlagsabflüssen	26
1.4.1	Dezentrale Anlagen	26
1.4.2	Zentrale Behandlungsanlagen	26

Kläranlagen Kanalisation Regenwasserbehandlung Gewässerplanung Hochwasserschutz	DAI	HLEM
Erschließungsplanung Tragwerksplanung		ABWASSER
Energie Maschinen-/Elektrotechnik		WASSER
THE REAL PROPERTY.		ENERGIE
		INFRASTRUKTUR
DAHLEM · Beratende Ingenieur kontakt@dahlem-ingenieure.d		

1.5	Anlagen zur Mischwasserbehandlung	27
1.5.1	Regenüberläufe	28
1.5.2	Mischwasserbehandlungsanlagen (RÜB, SK)	32
1.6	Regenrückhalteräume	44
1.7	Regenklärbecken	48
1.8	Retentionsbodenfilter	49
1.9	Hochwasserschutz für Abwasseranlagen	52
1.10	Regenwasserbewirtschaftung vor Ort	53
2.	Berechnung des Leitungsnetzes	55
2.1	Schmutzwasserabfluss	55
2.2	Regenwasserabfluss	55
2.2.1	Schätzung aus der Fläche oder aus der Länge	55
2.2.2	Abgekürzte Berechnung aus Länge, Geschwindigkeit und	
	Abflussbeiwert	
2.2.3	Abwasseranfall in Abhängigkeit von der Bebauung	
2.2.4	Listenrechnung	61
2.2.5	Berechnung mit Hilfe der EDV	67
2.3	Bestimmung der Querschnitte	67
2.4	Tafeln zur Berechnung von Leitungsquerschnitten	71
3.	Tragverhalten von Abwasserkanälen	79
3.1	Einleitung	79
3.2	Kanalrohre und -rohrleitungen	79
3.2.1	Kreisringmodell	79
3.2.2	Längsbiegung	81
3.2.3	Werkstoffverhalten	82
3.3	Rohr-Boden-Systeme	
3.3.1	Neubau bzw. Erneuerung in offener Bauweise	
3.3.2	Neubau in geschlossener Bauweise	
3.3.3	Instandsetzung in geschlossener Bauweise	
3.4	Belastungen	92

3.4.1	Verkehrslasten	92
3.4.2	Außenwasserdruck	92
Zweit	er Teil: Abwasserbehandlung	93
4.	Allgemeines über die Abwasserbehandlung	
4.1	Überblick über die Aufgabe	
4.2	Vorgänge der Abwasserreinigung	
4.3	Die Verfahren der Abwasserreinigung und ihre Leistung	
4.4	Natürliche oder künstliche Verfahren?	103
4.5	Abwasser als Wertstoff	
4.5.1	Wasser	104
4.5.2	Wärme/Kälte	105
4.5.3	Organische Substanz	105
4.5.4	Anorganische Substanz	106
4.6	Kosten der Abwasserreinigung	108
4.7	Emissionen	
4.7.1	Gerüche	110
4.7.2	Geräusche	122
4.7.3	Aerosole	126
5.	Berechnung und Planung der Abwasserbehandlung	127
5.1	Beschaffenheit des Abwassers	127
5.1.1	Dispersität	128
5.1.2	Summarische Parameter	128
5.1.3	Biologische Parameter	147
5.1.4	Beziehungen wichtiger Parameter untereinander	152
5.1.5	Einwohnerspezifische Frachten	153
5.1.6	Beschaffenheit von abfließendem Niederschlag	15
5.1.7	Anforderungen an gewerblich/industrielle Indirekteinleitungen	150
5.2	Siebe, Rechen	
5.3	Schwimmverfahren	16

5.4	Absetzverfahren	167
5.4.1	Körniger Schlamm und Oberfläche	167
5.4.2	Sandfang	169
5.4.3	Flockenschlamm und Durchflusszeit	175
5.4.4	Absetzbecken	176
5.4.5	Beckenarten	180
5.4.6	Flockung	185
5.5	Chemische Fällung	185

5.6	Biologische Verfahren188
5.6.1	Weiträumige Landbewässerung191
5.6.2	Rieselfelder (hoch belastete)195
5.6.3	Bodenfilter196
5.6.4	Flächenbedarf199
5.6.5	Tropfkörper199
5.6.6	Tauchkörper, getauchte Festbetten214
5.6.7	Biofilter216
5.6.8	Verfahren mit belebtem Schlamm217
5.6.9	Abwasserteiche, Stauseen, Feuchtgebiete247
5.6.10	Nitratverfahren251
5.6.11	Anaerobe Abwasserreinigung252
5.7	Weitergehende Abwasserreinigung254
5.7.1	Überblick254
5.7.2	Weitergehende Kohlenstoffelimination256
5.7.3	Weitergehende Phosphorelimination259
5.7.4	Weitergehende Stickstoffelimination260
5.7.5	Chlor, Entkeimung262
5.7.6	Elimination von Mikroverunreinigungen264
5.8	Bemesssung und Auslegung von Belebungsanlagen272
5.8.1	Bemessung von Belebungsanlagen nach dem DWA-Arbeitsblatt
	A 131272
5.8.2	Automatisierung des Belebungsverfahrens
5.8.3	Einsatz der dynamischen Simulation für Planung und Betrieb
	kommunaler Belebungsanlagen
5.9	Abwasserwiederverwendung302
5.9.1	Bedeutung von Wasserwiederverwendung302
5.9.2	Möglichkeiten der Wasserwiederverwendung303
5.9.3	Anforderungen an die Wasserqualität304

5.9.4	Vorschriften und Standards30
5.9.5	Typische Verfahrensketten30
5.10	Behandlung des Schlammes30
5.10.1	Überblick30
5.10.2	Schlammbeschaffenheit30
5.10.3	Schlammanfall312
5.10.4	Eindickung314
5.10.5	Klärschlammdesintegration
5.10.6	Überlüftung (simultan-aerobe Stabilisierung)323
5.10.7	Schlammfaulung
5.10.8	Bauarten der Schlammfaulräume
5.10.9	Rohstoffe des Faulgases
5.10.10	Gasgewinnung, Heizung und Gasverwertung
5.10.11	Methan als Treibstoff
5.10.12	Schlammtrockenbeete
5.10.13	Schlammteiche, Pflanzenbeete
5.10.14	Konditionierung des Schlammes
5.10.15	Maschinelle Entwässerung des Schlammes349
5.10.16	Schlammwasserbehandlung352
5.10.17	Schlammtrocknung
5.10.18	Schlammverbrennung361
5.10.19	Landwirtschaftliche Klärschlammverwertung366
5.10.20	Beseitigung des Schlammes
5.11	Gewerbliches Abwasser371
5.11.1	Allgemeine Gesichtspunkte
5.11.2	Verschiedene Abwässer und Anforderungen für Indirekteinleiter und
	Direkteinleiter
5.12	Kleinkläranlagen, dezentrale Abwasserbehandlung398
5.13	Neuartige Sanitärsysteme402

5.14	Kleine Klärwerke	406
5.15	Behelfsanlagen	
5.16	Einzelheiten der Klärwerksplanung	
5.17	Kläranlagenbetrieb	418
5 18	Energetische Effizienz	419

ABWASSERTECHNIK made in German

5	SCHREIBER TECHNOLO
	5

Dritter	Teil: Gewässerschutz	423
6.	Die Einleitung des Abwassers in die Gewässer	423
6.1	Kreislauf des Wassers	423
6.2	Gesetzliche Anforderungen	
6.2.1	Die Europäische Wasserrahmenrichtlinie	
6.2.2	Oberflächengewässerverordnung	435
6.2.3	Badegewässerrichtlinie	441
6.2.4	TMDL-Konzept der USA	
6.3	Ansprüche des Gewässers	443
6.4	Beeinträchtigungen	
6.5	Hilfen im Gewässer	453
7.	Die Selbstreinigung der Gewässer	458
7.1	Allgemeines	458
7.2	Der Sauerstoffverbrauch	
7.3	Die Sauerstoffaufnahme	464
7.4	Die Berechnung des Sauerstoffhaushalts	
7.4.1	Sauerstoffverbrauch und -aufnahme	468
7.4.2	Schätzungsverfahren nach Fair	471
7.4.3	Berechnung der Sauerstofflinie nach Fair	474
7.4.4	Zulässige Belastung nach Fair	476
7.4.5	Berechnung einer künstlichen Belüftung für Fließgewässer	
7.5	Gewässergütemodelle	482
7.5.1	Abwasserlastplan	
7.5.2	Weitere Gewässergütemodelle	486
Vierter	Teil: Normung	.489
	Normung, DWA-Regelwerk	
	Normung	
	DWA-Regelwerk	

	ter Teil: Maße, Verzeichnisse	509
Funt	ter Tell: Mabe, verzeichnisse	500
9.	Maße, Verzeichnisse	500
9.1	Englische und amerikanische Maße	509
9.2	Sachverzeichnis	511
	l iteratur	518
	Language	630
9.2 10.	Sachverzeichnis Literatur	5